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a b s t r a c t

The stability of the equilibrium of quasilinear systems in standard Bogolyubov form is investigated.
Classes of systems are distinguished out for which it is possible to determine the threshold value �0

of the small parameter � which ensures qualitative agreement between the solutions of the initial sys-
tems of equations and the solutions of the averaged system corresponding it in an infinite time interval
when � < �0.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known1,2 that Bogolyubov’s second theorem provides the conditions under which both the qualitative as well as the quantitative
correspondence between the solutions of the initial system of equations

(1.1)

and the solutions of the averaged system corresponding to it

(1.2)

holds, in an infinite time interval, for sufficiently small

(1.3)

holds, in an infinite time interval, for sufficiently small values of the numerical parameter �.For applications, it is of interest to have an
estimate for the small parameter �, that is, in each specific case it is very important to determine the threshold value �0 of the small
parameter for which satisfaction of the condition � < �0 guarantees correspondence between the solutions of the initial and averaged
systems.

It turns out that it is possible to obtain such an estimate for several classes of system of the form of (1.1) by the approaches proposed
earlier3,4 using Lyapunov’s second method. Unfortunately, these classes are narrower compared with those considered in Bogolyubov’s
second theorem.

2. The stability of the equilibrium of a system of the form (1.1) when the vector function X(t,x) is periodic in t

We will consider the case when system (1.1) can be represented in the form

(2.1)
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where

Furthermore, we shall assume that the matrix A(t) depends 2�-periodically on t. As regards the vector function F(t,x), only its boundedness
with respect to t∈]-∞,∞[is sufficient, that is, 2�-periodicity of F(t,x) with respect to t is not required.

As we see, with the assumption’s which have been made regarding the vector function X(t,x), the point x = 0 is an equilibrium of system
(2.1).

Without loss of generality, we shall assume below that all the coefficients of system (2.1) as well as the time t are dimensionless
quantities.

We further use the notation

(2.2)

Moreover, we will represent the matrix A(t) in the form

(2.3)

Finally, suppose A∗
1(t) is the primitive of the matrix A1(t) such that 〈A∗

1(t)〉 = 0.
Taking account of the above assumptions and the notation introduced, we will rewrite Eq. (2.1) in the form

(2.4)

Together with Eq. (2.4), we consider the auxiliary system

(2.5)

We will denote the roots of the characteristic equation

(2.6)

by �1,. . .,�n, where E is the identity matrix.
We next distinguish the cases when the real parts of all the roots of Eq. (2.6) are negative and when a positive real part corresponds to

just one root.
We will initially assume that the real parts of all the roots of Eq. (2.6) are negative, that is,

(2.7)

Then, by Lyapunov’s theorem5 (also, see Ref. 6), a positive definite quadratic form

(2.8)

exists whch satisfies the equation

(2.9)

in which the Lyapunov operator L(V0) is defined by the equality

(2.10)

and U1(x)=xTC1x is a positive-definite quadratic form.
We will now consider the regular bundles of the quadratic forms7

(2.11)

We will denote their characteristic numbers by �

(2.12)

We will denote their characteristic numbers by �i(t) and �i(t) (i=1,2,. . .,n) and we will determine these from the corresponding characteristic
equations:

(2.13)

Suppose

(2.14)

We now turn to the case when Eq. (2.6) admits of just one root �* with a positive real part, that is, Re�*>0. Then, according to Lyapunov’s
theorem, a quadratic form

(2.15)
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exists which satisfies the equation

(2.16)

The Lyapunov operator L(W0) on the left-hand side of Eq. (2.16) is determined by an equality of the form (2.10) with the matrix B1
in it replaced by the matrix B2. On the right-hand side of equality (2.16), the quantity � denotes a positive constant, U2(x)=xTC2x is a
positive definite quadratic form and, at the same time, the structure of the quadratic form is such that the set W0>0 is a non-empty
set.

We now consider the regular bundle of the quadratic forms

(2.17)

where � is the largest eigenvalue of the matrix B2. Since the positiveness set of the quadratic form W0 is a non-empty set, it is natural that
� > 0. Together with the bundle (2.17), we also consider the regular bundle of the quadratic forms

(2.18)

We will denote the characteristic numbers of the bundles considered by �̃i(t) and �̃i(t) (i = 1, 2, . . . , n) and determine these from the
characteristic equations

(2.19)

We next use the notation

(2.20)

and formulate the basic assertion, which essentially rests on properties of the roots of the characteristic equation (2.6) and the properties
of the characteristic numbers of the corresponding bundles of the quadratic forms.

Theorem 1. The equilibrium position x = 0 of system (2.1) is asymptotically unstable if condition (2.7) is satisfied and � < �0, where �0=	−1.

Conversely, the equilibrium position x = 0 is unstable when the characteristic equation (2.6) has just one root �* with a positive real

part and � < �0, where �0 = 	̃
−1

.

Proof. We assume that condition (2.7) is satisfied and consider the auxiliary function

(2.21)

The function V0 is determined by equality (2.8). Calculating the derivative of the function V with respect to t along the vector field defined
by system (2.4), taking account of equalities (2.8) - (2.10), we obtain

(2.22)

We now rewrite equality (2.21) in the form

(2.23)

If we replace the factor 1/� in the circular brackets on the right-hand sides of equalities (2.23) and (2.22) by � and � respectively, we
obtain the regular bundles of the quadratic forms in the form (2.11). The function V will therefore be positive definite when 1/�>�+ and the
derivative dV/dt will be negative definite when 1/�>�+. Turning to the determination of the quantity 	, we see that the inequality �<�0,
provided that �0=	−1, does, in fact, ensure the asymptotic stability of the equilibrium position x = 0 of system (2.1). Hence, the first part of
the theorem is proved.

We will now prove the second part of the theorem, assuming that a root of the characteristic equation (2.6) exists for which
Re�*>0.

We consider the auxiliary function

(2.24)

The function W0 is defined by equality (2.15). Calculating the derivative of the function W with respect to t along the vector field
determined by system (2.4), taking account of equalities (2.15) and (2.16), we obtain

We see that the regular bundle of quadratic forms of the form (2.18) is contained in the square brackets on the right-hand side of this
equality. Therefore, if 1/� > �̃+, the expression
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becomes a positive definite function. On the other hand, a ray exists in which the equality

holds, and, therefore, if 1/� > �̃+, the positiveness set of the function W is non-empty.

So, by choosing �0 = 	̃
−1

in the case being considered, when �<�0 we attain satisfaction of the conditions of Chetayev’s theorem on
instability.

Corollary. Under the conditions of Theorem 1, the stability (instability) of the equilibrium x = 0 of system (2.1) is completely determined
by the stability (instability) of the equilibrium y = 0 of the system

Example 1. We will now apply Theorem 1 to the problem of the oscillations of a pendulum with a periodically changing gravitational
field and a resistant medium (Ref. 8, p. 28). In this case, the equation of motion within the specifications has the form

(2.25)

where 
,�,�,� are positive constants. As above, without any loss in generality we shall assume that these constants, as well as the time
t, are dimensionless quantities. We will investigate the stability of the trivial solution x = ẋ = 0 corresponding to the lower equilibrium
position of the pendulum.

Then, assuming that the periodically changing gravitational field is a high frequency field and introducing the new independent variable
�t=, we rewrite Eq. (2.25) in the form of a system of two equations in the standard form

where �=1/� and a prime denotes differentiation with respect to the variable t.
In this case, the auxiliary system of the type of (2.5) has the form

(2.26)

Since the stability of the lower equilibrium position of the pendulum is being discussed, in the case considered the real parts of the
roots of the corresponding characteristic equation are negative. In the case considered, we will take the Lyapunov type equation (2.9) in
the form

(2.27)

Note that there is arbitrariness in the choice of the positive definite function U1 in Eq. (2.9), and, depending on in which form we select
the function U1. we obtain the corresponding form of the matrix B1. Depending on how the function U1 is chosen when forming Eq. (2.7),
we have

In the case considered, the characteristic equations of the type (2.13) correspondingly have the form

(2.28)

From Eqs (2.28) we have

Noting that the coefficient 
, which characterizes the resistance of the medium, is usually small compared with the quantity �, we conclude
that, when

the lower equilibrium position of the pendulum is asymptotically stable. Here, instead of the exact values for �+ and �+, which are
determined from Eqs (2.28), we will confine ourselves to their rougher estimates. In the problem considered, the equilibrium position
of the averaged system is always asymptotically stable. However, in order to guarantee the asymptotic stability of the initial system, the
frequency of the periodically changing gravitational field has to be subjected to the constraint

(2.29)

The latter constraint becomes natural if account is taken of the fact that, in the case of a sufficiently small coefficient 
, the system
considered is subjected to parametric “swinging”. The choice of the frequency � in accordance with condition (2.29) enables one to avoid
this phenomenon.



80 S.P. Sosnitskii / Journal of Applied Mathematics and Mechanics 74 (2010) 76–83

Example 2. We will now consider the well known problem of stabilizing the upper equilibrium position of the pendulum9,10. The
equations of motion in the case considered have the form1,2

Here, the notation1,2 adopted earlier is largely retained. It is well known 1,2 that this equation can be represented in the standard form

Considering the stability of the upper position of the pendulum (� = �) and only retaining terms having the first power of the small
parameter � as a factor, we arrive at the equations of the perturbed motion in the form

(2.30)

In this case, the auxiliary system of the type of (2.5) has the form

The real parts of the roots of the corresponding characteristic equation will be negative if

(2.31)

In the case considered, we choose the Lyapunov type equation (2.9) in the form

(2.32)

According to the choice of the function U1, made when setting up Eq. (2.32), we have

In the case considered, the characteristic equations of the type of (2.13) correspondingly have the form

(2.33)

where

From Eqs. (2.33), we determine

(2.34)

where

Unlike in Example 1, in the present example there is no possibility of obtaining simple analytical estimates for the quantities �+ and
�+. However, it can be concluded on the basis of inequalities (2.34) that the number �0 determined depends considerably on the damping
coefficient 
 and on the margin with which the stability condition (2.31) of the averaged system is satisfied. In particular, if we take 
=1/40
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k=1/2, then, carrying out the calculations using the MAPLE suite of programs, we obtain �0≈1/68 for the problem considered. Hence, in
order to guarantee the asymptotic stability of the upper equilibrium position of the pendulum, it is not sufficient to satisfy condition (2.31)
and it is still necessary to ensure an appropriate choice of the threshold value of the small parameter �. It is clear that the condition for
asymptotic stability obtained is only sufficient and it remains an open question as to what extent the estimate for the small parameter �
is overestimated.

3. Extension to the case of a conditionally-periodic vector function X(t,x) with respect to t

Since the problem of small divisors arises when integrating conditionally-periodic functions, we shall henceforth restrict ourselves to
a very narrow class of given functions.

Definition. We will say that a conditionally-periodic function (matrix function) F(t) satisfies an additivity condition if the following
equality holds (summation is henceforth carried out from i = 1 to i = k)

(3.1)

where each of the function (matrix functions) Fi(�it) is periodic with period 2�/�i where �1>�2>. . .>�k≥�0>0.
In particular, integrating a linear system with constant coefficients, the characteristic equation of which only has different pure imaginary

roots, we arrive precisely at a matrix function with this structure.
Leaving the previous prerequisites regarding system (2.1) in force, with the exception of the prerequisite referring to the structure of

the matrix A(t), we next require that the matrix A(t) should be conditionally-periodic and satisfy the additivity condition. Then, by the
definition of the matrix A(t) presented above, we have a representation in the form

(3.2)

We use the notation

Naturally, in this case,

It is subsequently convenient to represent each of the matrices Ai(ωit) in the form

Finally, denoting the primitives of the matrices Ãi(ωit) by A∗
i
(ωit) such that 〈A∗

i
(ωit)〉 = 0, in the case considered we reduce Eqs (2.1) to

the form

(3.3)

As previously, together with Eq. (3.3), we shall consider an auxiliary system of the form (2.5) and the characteristic equation of the form
(2.6) corresponding to it.

Assuming initially that the real parts of all the roots of the characteristic equation (2.6) are negative, we consider the regular bundles
of the quadratic forms

(3.4)

where

Here, in the same as above, Ṽ0 = xT B̃1x and Ũ1(x) = xT C̃1x are positive definite quadratic forms for which Lyapunov’s equation

is satisfied.
The characteristic number of the bundles (3.4) are denoted by �i(t) and �i(t) (i=1,2,. . .,n) respectively. In determining them from the

characteristic equations

we shall assume that
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It can be seen that the bundles of the quadratic forms (3.4) have the same structure as in Section 2.
In the same way as described above, when a characteristic equation of the form of (2.6) admits of just one root �* with a positive real

part, we consider the regular bundles of the quadratic forms

(3.5)

where

Here, by analogy with Section 2, W̃0 = xT B̃2x and Ũ2 = xT C̃2x are quadratic forms associated with Lyapunov’s equation

which corresponds to an unperturbed system of the form of (2.5). Here, the quantity �̃ denotes a positive constant, the quadratic form Ũ2 is
positive definite, the positiveness set of the quadratic form W̃0 is non-empty and ˜̌ > 0 corresponds to the largest eigenvalue of the matrix
˜̌ 2.

The characteristic numbers of the bundles considered are denoted by �̃i(t) and �̃i(t) (i = 1, 2, . . . , n) respectively. These numbers are
determined from characteristic equations, which differ from Eqs (2.19) in that L1,L2,�,C2 is replaced by L̃1, L̃2, �̃, C̃2. As above, we shall use
the first two definitions (2.20).

Theorem 2. Suppose the conditionally-periodic matrix A(t) in Eqs (2.1) satisfies the additivity condition. The equilibrium position x = 0
of system (2.1) is then asymptotically stable if condition (2.7) is satisfied and �<�0, where 1/�0=max(�+,�+).

Conversely, the equilibrium position x = 0 is unstable when the characteristic equation (2.6) has roots with a positive real part and �<�0,
where

(3.6)

Proof. Consider the auxiliary functions

(3.7)

the expressions for which contain the Lyapunov functions Ṽ0 and W̃0 for an auxiliary system of the form (2.5), and functions (3.7) correspond
to the case of its asymptotic stability and instability respectively. As regards the terms �V1 and �V2, where

they are correction terms in their own way if account is taken of the fact that the functions V and W are subsequently used as Lyapunov
functions when investigating system (3.3) which will be a system with variable coefficients. It is natural that the terms �V1 and �V2 must
somehow reflect the structure of system (3.3).

We calculate the derivative of the functions V and W along the vector field defined by system (3.3). We arrive at the equalities

(3.8)

It can be seen that the terms �V1 and �V2 in equalities (3.7) are chosen in such a way that variable terms containing the small parameter �
to the first power do not appear on the right-hand sides of equalities (3.8).

Next, representing the first equality of (3.7) in the form

(3.9)

we see that, replacing the factor 1/� in equality (3.9) and the first equality of (3.8) by � and � respectively, we arrive at the pair of regular
bundles of the quadratic forms (3.4). Now, applying the mode of reasoning described in Section 2, we conclude that the first part of Theorem
2 is true.

Unlike the first equality of (3.7), the right-hand side of the second equality of (3.7) does not reduce to a regular bundle of quadratic
forms since, in the general case, the quadratic form W̃0 is of alternating sign. Hence, when discussing instability, we consider the regular
bundles of the quadratic forms in the form of the first expression of (3.5). The choice of the small parameter � in accordance with the
inequality 1/ε > �̃+ ensures a non-empty set W > 0. On the other hand, putting 1/ε > �̃+, we achieve the property of a negative sign for
the expression in the square brackets on the right-hand side of the second equality of (3.8). It follows that, if equality (3.6) holds, the
conditions of Chetayev’s instability theorem are satisfied.

Theorem 2 is proved.
Under the conditions of Theorem 2, there is a corollary similar to that obtained in Section 2.
Example 3. By analogy with Example 1, we apply Theorem 2 to the problem of the oscillations of a pendulum in a conditionally-

periodically changing gravitational field and a resistant medium. In this case, we represent the equation of motion in the form

(3.10)
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where, as in Example 1, 
,�,� are positive constants. As above, without loss in generality, we shall assume that these constants, as well as
the time t, are dimensionless quantities. Furthermore, we shall assume that the conditionally-periodic function �(t) satisfies the additivity
condition and has the form (3.1). Without loss in generality, we will take the time average of �(t) to be equal to zero and investigate the
trivial solution x = ẋ = 0 of the corresponding lower equilibrium position of the pendulum.

Next, assuming that the conditionally-periodically varying gravitational field is a high-frequency field and introducing the new inde-
pendent variable ωkt = �, we rewrite Eq. (3.10) in the form of a system of two equations in standard Bogolyubov form

(3.11)

In this case, the auxiliary system of the type (2.5) has the form (2.26).
In the case considered, the real parts of the roots of the corresponding characteristic equation are negative. We choose a Lyapunov

equation of the type (2.9) in the form

Hence, we have

In the case considered, the characteristic equations of type (2.13) take the form

(3.12)

where �*() is the primitive of the function �(t) such that 〈�*()〉=0.
The coefficient 
, characterizing the resistance of the medium, is usually small compared with the quantity �. From Eqs (3.12), we

therefore have

So, when

the lower equilibrium position of the pendulum is asymptotically stable.
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